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Partition function for a one-dimensional d-function Bose gas

Go Kato* and Miki Wadati†
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TheN-particle partition function of a one-dimensionald-function Bose gas is calculated explicitly using only
the periodic boundary condition~the Bethe ansatz equation!. TheN-particles cluster integrals are shown to be
the same as those by the thermal Bethe ansatz method.
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I. INTRODUCTION

Extending the work by Lieb and Liniger@1#, Yang and
Yang @2# presented an ingenious method to study the eq
librium thermodynamics of a one-dimensional system
bosons with repulsived-function interaction. The Hamil-
tonian of the system is

HN52(
i 51

N S ]2

]xi
2 1k(

j Þ i
d~xj2xi ! D , ~1.1!

wherek is the coupling constant and is assumed to be p
tive. Throughout the paper, the Planck constant and the m
of a particle are chosen to be\51 and 2m51. This system
is a first quantized version of the nonlinear Schro¨dinger
model described by the Hamiltonian operator

H5E dx@fx
1fx1kf1f1ff#, ~1.2!

where f(x,t) and f1(x,t) are boson field operators. Th
method invented by Yang and Yang is called the therm
Bethe ansatz~TBA! method since it starts from the Beth
ansatz wave function@3# and enables us to calculate the the
modynamic quantities at finite temperature. While there h
been many successful applications to quantum particle
spin systems, not much study on the method itself has b
done. A crucial assumption is the form of the entrop
Thacker@4# studied thed-function Bose gas in infinite vol-
ume by the field-theoretic perturbation method and rep
duced the results of the TBA method. One of the auth
~M.W.! @5# presented a bosonic formulation of the TB
method and calculated the grand partition function of
system at infinite volume. In this paper, we calculate exp
itly the N-particle partition function of the Hamiltonian~1.1!
under the periodic boundary condition. That is, the assu
tions of the TBA method are not used and all the calculati
are carried out exactly at finite volume. A preliminary res
for N52, 3, 4 has been reported in Ref.@6#.

The outline of the paper is the following. In Sec. II, w
present a method to evaluate the partition function for
N-particle system. A key idea is that we use only the perio
boundary condition of the wave function. In Sec. III, w
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calculate theN-particle cluster integrals using the partitio
function. An explicit calculation for theN-particle system
has been done. The results are compared with those give
the TBA. We prove that both results completely agree. T
last section is devoted to concluding remarks. Technical
tails of calculations are summarized in Appendixes A–D.

II. N-PARTICLE PARTITION FUNCTION

We study a statistical mechanics of the quantu
N-particle system~1.1!. Let E, L, and $ki% denote the total
energy, the system size, and the wave numbers. It is kn
that the total energy and the wave numbers are determ
by the following relations:

E5(
i 51

N

ki
2, ~2.1!

Lki52pni1(
j , i

D~kj2ki !2(
j . i

D~ki2kj !, ~2.2!

where$ni% are integers satisfying the condition,

ni>ni 11 , ~2.3!

andD(k) is the phase shift for two-body scattering,

D~k!522 tan21S k

k D . ~2.4!

The relation~2.2! is obtained from the periodic boundar
condition imposed on theN-particle eigenfunction and is
called the Bethe ansatz equation. The range of the func
~2.4! is assumed to be~22p, 0!, and this phase shift is not
‘‘true’’ one in the sense of Ref.@5#. That is, the phase-shif
function ~2.4! has analyticity on the real axis. The appea
ance of only the two-bodyS-matrix in ~2.2! implies the fac-
torization of S-matrices, which is one of the remarkab
properties of integrable systems.

The partition function for theN-particle system is defined
by

ZN5(
$nj %

expS 2b(
i 51

N

ki
2D , ~2.5!

where, withT being the absolute temperature,
©2001 The American Physical Society06-1
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b5
1

kBT
, ~2.6!

and the summation is over all possible configurations of$nj%
under the condition~2.3!. Without recourse to the TBA
method, we calculate the partition functionZN only by using
the relations~2.1!–~2.4!. We explain a method in three step

A. Change of summation

In terms of new variable and function,

ñm[nm2m1
N11

2
, ~2.7!
.

r

03610
D̃~k![D~k!1p, ~2.8!

the periodic boundary condition~2.2! is changed into

Lki52pñi1(
j Þ i

D̃~kj2ki !. ~2.9!

We interpret~2.9! as analytic relations between real numbe
$ñi% and $ki%. From the symmetry of~2.9!, we see that,
when $ñ1 ,...,ñi ,...,ñ j ,...,ñN% corresponds to
$k1 ,...,ki ,...,kj ,...,kN%, $ñ1 ,...,ñ j ,...,ñi ,...,ñN% should
correspond to$k1 ,...,kj ,...,ki ,...,kN%.

It is convenient to introduce the following set function:
Q~s![ H uU nPs, s8Pu, nPs8
s9,s-Pu, s9Þs-⇒n9Ps9, n-Ps-, n9Þn-J . ~2.10!
A domains of the function is a family of arbitrary finite sets
The first condition,nPs,s8Pu,nPs8, means that the sum
of the elements inu is s. The second condition,s9,s-
Pu,s9Þs-⇒n9Ps9,n-Ps-,n9Þn-, means that the sum
is a direct sum. That is, the imageQ~s! is all the families of
sets whose direct sum is the sets. If the argument is an
integer, we define

Q~N![Q~$1,2,...,N%!. ~2.11!

For example,

Q~9!{$$1,2%,$3%,$4%,$5,6%,$7,8%,$9%%5u9 . ~2.12!

Figure 1 illustratesu9 in ~2.12!. And we define a symbol, fo
arbitrary functionf (n1 ,...,nN),

( ~u,$ni%! f ~n1 ,...,nN![ (
$ns%,sPu

f ~n1 ,...,nN!,

~2.13!
uPQ~N!, ni5ns ,i Ps.

This symbol,S(u,$ni%) f (ni), indicates that a functionf is
summed up over allni on the condition thatnj5nk if an
element which contains bothj andk exists.

The following formula can be proved~Appendix A!:

(
n1,...,nN

f ~n1 ,...,nN!

5
1

N! (
uPQ~N!

F~u!( ~u,$ni%! f ~n1 ,...,nN!,

~2.14!

where

F~u!5 )
sPu

~21!~Ms21!~Ms21!!, ~2.15!
f ~n1 ,...,ni ,...,nj ,...,nN!5 f ~n1 ,...,nj ,...,ni ,...,nN!.
~2.16!

Here and hereafter, the number of elements in a sets is
denoted byMs .

By use of the formula~2.14!, the partition function is
rewritten as

ZN5 (
¯ñi.ñi 11.¯

expS 2b(
j 51

N

kj
2D

5
1

N! (
uPQ~N!

F~u!( ~u,$ñi%!expS 2b(
j 51

N

kj
2D .

~2.17!

B. Replacement of summations by integrals

To evaluate~2.17!, we have a useful formula,

(
n5 integer

f ~n!5 (
n5 integer

E
2`

`

dn8 f ~n8!exp~22p inn8!

if u f ~n!u,exp~2rn2!, r .0. ~2.18!

FIG. 1. A graphical representation of a setu9 in ~2.12!.
6-2
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This can be proved by the Fourier transform and the Jacobi’s imaginary transformation for elliptic theta functions. A
the formula~2.18!, we replace summations in~2.17! by integrals,

ZN5
1

N! (
uPQ~N!

F~u! (
$ns%,sPu

~21!~N21!SsPunsE )
sPu

dñs8expS (
sPu

~2bku
222p insñs8 ! D . ~2.19!

To proceed further, we define four symbols.
First,

L~u![ HlU l5$juj5$s,s8% s,s8Pu%
l8#lthe number of elements in$sujPl8 sPj%.Ml8

J , ~2.20!

u5$s1 ,s2 ,...%.
th
ec

l

d

of

e
d
an

to
The set functionL~u! consists of elementsl. l contains
elementsj, each of which has two elementss, s8. We callj
connection between the two elementss, s8. The connectivity
is referred to as the pattern of connections.L~u! represents a
set of all the patterns of connections that have no ring of
connections. In Fig. 2, the connection and ring of conn
tions are illustrated:

L~u9!{$$$1,2%,$3%%,$$1,2%,$4%%,$$5,6%,$7,8%%%5l9 .
~2.21!

The pattern of connectionl9 is shown in Fig. 3. As a specia
case,L~u! contains a pattern of no connection, i.e.,L(u)
{B.

Second,

n~s,l![the number of elements in$juj5$s,s8%,

s8P$s1 ,s2 ,...%, jPl%,
~2.22!

sP$s1 ,s2 ,...%, lPL~$s1 ,s2 ,...%!.

In words,n(s,l) is a number of elements which are linke
with s.

Third,

FIG. 2. The connection and the ring of connection.
03610
e
-

G~l![$l8#lu$s,s8%Pl, $s,s9%Pl8⇒$s,s9%Pl8%,

lPL~$s1 ,s2 ,...%!. ~2.23!

That is, G(l) means a set of connection patterns each
which is a cluster of the connection patternl. Here, the
cluster means that if two connectionsj8 and j9 in l are
linked with a common elements, thenj8 and j9 are in the
same cluster. For example,

G~l9!{$$$1,2%,$3%%,$$1,2%,$4%%%. ~2.24!

A pattern of no connection is included inG(l).
Fourth,

g~@l,u#!

[H sU sPu, jPl, s{j
l8PG~l!, l8ÞB, s5 ø

$s8,s9%Pl8

~s8øs9!J ,

u5$s1 ,s2 ,...%, lPL~u!. ~2.25!

@l, u# means thatl is consistent withu; an element which is
linked with l is in u. g(@l,u#) indicates a set of direct sum
‘‘elements ofu’’ which are connected by one cluster in th
connection patternl. The reason why an element is quote
here is that the element, at the same time, is a set. If
element ofu has no connection, the ‘‘element’’ belongs
g(@l,u#). For example,

g~@l9 ,u9# !5$$1,2,3,4%,$5,6,7,8%,$9%%. ~2.26!

The following formula is proved~see a proof in Appendix
B!:

uAs,s8~u!u5 (
lPL~u!

S I ~@l,u#! )
$s9,s-%Pl

xs9,s-D ,

~2.27!

with
6-3
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I ~@l,u#![LN2MlS )
sPu

Ms
n~s,l!21D S )

s8Pg~@l,u#!

Ms8D ,

~2.28!

As,s8~u!5H L1 (
s9Pu

Ms9xs,s9 if s5s8,

2Ms8xs,s8 if sÞs8

,

~2.29!
uPQ~N!, s,s8Pu, xs,s8[xs8,s , xs,s[0.

Using the formula~2.27!, we change variables in~2.19!
from $ñi% to $ki%. In terms of the above introduced symbo
we obtain

ZN5
1

N! (
uPQ~N!

F~u! (
$ns%,sPu

~21!~N21!SsPuns

3E )
sPu

dks

2p (
lPL~u!

I ~@l,u#!

3S )
$s,s8%Pl

dD

dk
~ks2ks8!D expF (sPu H 2bMsks

2

2 insS Lks2 (
s8Pu,Þs

Ms8D̃~ks82ks!D J G . ~2.30!

F(u) is defined in~2.15!. Note that because of a relation,
ñi5ñ j , thenki5kj , the Jacobian of the transformation ca
be written explicitly.

C. Change of integral paths

We change the integral paths in~2.30! from $~2`, `!% to
$(2`2(Lns/2bMs) i ,`2(Lns/2bMs) i )%. In what fol-
lows, ‘‘an integral path steps over a residue,’’ means t
io

ith

03610
t

when an integral path is moved, there is a residue in
region surrounded by the initial and final integral paths. It
important to note that each integral path in~2.30! does not
step over any residue by this change of the integral path

Performing the change of integral paths as introduc
above, we arrive at an expression of the partition functio

ZN5 (
uPQ~N!

(
lPL~u!

J~@l,u#!S~@l,u#! ~2.31!

with

J~@l,u#![
LN82Ml

N8! S )
s8Pg~@l,u#!

Ms8D
3S )

sPu
Ms

n~s,l!21~21!~Ms21!~Ms21!! D ,

~2.32!

FIG. 3. The pattern of connection@l9 ,u9# in ~2.21!. Here,
@l9 ,u9# indicates thatl9 is consistent withu9 .
S~@l,u#![ (
$ns%,sPu

~21!~N821!SsPuns expS 2
L2

4b (
sPu

ns
2

Ms
D E )

sPu

dks

2p S )
$s,s8%Pl

dD

dk S ks2ks82
Lns

2bMs
i 1

Lns8
2bMs8

i D D
3expF (

sPu
H 2bMsks

21 insSs8Pu,ÞsMsD̃S ks82ks2
Lns

2bMs
i 1

Lns8
2bMs8

i D J G , ~2.33!
ned
N8[ (
sPu

Ms . ~2.34!

This formula enables us to calculate the partition funct
in any order of the system sizeL. In another way of writing,
we can calculate the partition function for the system w
finite size as

ZN5(
n

Un~L,b!expS 2
nL2

4Nb D , ~2.35!
n

lim
L→`

Un~L,b!

LN ,A~b!, n>0.

It should be remarked thatUn for arbitrary n is explicitly
obtained from~2.31!–~2.34!.

III. CLUSTER EXPANSION

The cluster expansion for the equation of state is defi
by
6-4
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pb5 lim
L→`

L21 logS (
N50

`

~zNZN!D ~3.1!

5 (
N51

`

zNbN , ~3.2!

wherez is the fugacity~rigorously, the absolute activity!,

z5exp~bm!. ~3.3!

The partition function$ZN% and the cluster integral$bN%
are related as

bN5 lim
L→`

(
uPQ~N!

~M u21!! ~21!Mu21 )
sPu

Ms!

LN! )
sPu

ZMs
.

~3.4!

Expanding the right-hand side of Eq.~3.1! in powers ofz and
combinatorially summing up the coefficients, we can pro
the relation~3.4!.

We define that

Lc~u!5$lulPL~u! Mg~l,u!51%. ~3.5!

Lc(u) is a set of connection patterns which consist of o
cluster ~this cluster has nothing to do with the cluster int
gral!.

Substituting the expression~2.31! of ZN into ~3.4!, we
obtain

bN5
1

L (
uPQ~N!

(
lPLc~u!

J~@l,u#!S`~@l,u#!, ~3.6!

whereJ(l,u) is defined in~2.32!, and

S`~@l,u#![E )
sPu

dks

2p S )
$s,s8%Pl

dD

dk
~ks2ks8!D

3expS (
sPu

~2bMsks
2 ! D . ~3.7!

This is proved in Appendix C.
To compare the results in this paper with those in Ref.@5#,

we define a functionK(k) by

dD~k!

dk
22pd~k![K~k!. ~3.8!

Note that for the noninteracting case,K(k)[0.
In term of K(k), the cluster integralbN can be expresse

as follows:

bN5
1

L (
uPQ~N!

(
lPLc~u!

J8~@l,u#!S8̀ ~@l,u#!, ~3.9!

with
03610
e

e

J8~@l,u#![
L

~N21!! S )
sPu

Ms
n~s,l!21~Ms21!! D ,

~3.10!

S8̀ ~@l,u#![E )
sPu

dks

2p S )
$s,s8%Pl

K~ks2ks8!D
3expS (

sPu
~2bMsks

2 ! D . ~3.11!

A proof of Eq. ~3.9! is given also in Appendix C.
The cluster integrals~3.9! agree with those derived by th

TBA method~see Appendix D for detail calculation!. In this
way, we have proved that the thermal Bethe ansatz~TBA!
method by Yang and Yang gives the exact equation of st

IV. CONCLUDING REMARKS

Taking a one-dimensionald-function Bose gas as a typi
cal example of integrable systems, we have derived
N-particle partition function. A method in this paper, referr
to as the direct method, is an exact analysis of the parti
function only based on the periodic boundary condition. U
ing the explicit expression of the partition function, we ha
calculated theN-particle cluster integral, and proved a pe
fect agreement between the results of this direct method
the thermal Bethe ansatz~TBA! method.

The extensions and applications of the direct method
integrable and nonintegrable systems may clarify mathem
cal structures of the TBA method. Those problems are
for future studies.

ACKNOWLEDGMENTS

One of the authors~G.K.! would like to express his sin
cere thanks to T. Sasamoto, Y. Komori, and A. Nishino
valuable comments and stimulating discussions.

APPENDIX A: A PROOF ON „2.14…

We prove~2.14!, that is,

(
nl,¯,nN

f ~n1 ,...,nN!5
1

N! (
uPQ~N!

F~u!( ~u,$ni%!

3 f ~n1 ,...,nN!, ~A1!

whereF(u) and((u,$ni%) are defined in~2.15! and ~2.14!,
and f (n1 ,...,ni ,...,nj ,...,nN) satisfies

f ~n1 ,...,ni ,...,nj ,...,nN!5 f ~n1 ,...,nj ,...,ni ,...,nN!.
~A2!

We define a semiorder on a setuPQ(N),

u8<u⇔
def

s8Pu8, sPu, s8#s. ~A3!

A sufficient condition of Eq.~A1! is
6-5
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(
u8<u

F~u8!5du,uN
, uPQ~N!, ~A4!

where

uN[$$1%,$2%,...,$N%%, ~A5!

du,uN
[H 0 if u5uN ,

1 otherwise.
~A6!

We consider a function,

X~$xi , j%![)
j 52

N S 12(
i 51

j 21

xi , j D ~A7!

and a mappingP,

P:h~$xi , j%!→(
i

niu i , u iPQ~N! ~A8!

which satisfies the following relations:

P~h11h2!5P~h1!1P~h2!,

P~nh!5nP~h!, ~A9!

PS)
i

xni ,mi D 5g~@$juj5$$ni%,$mi%%%,uN# !,

where h,h1 ,h2 are arbitrary polynomial functions, an
g(@l,u#) is defined in~2.25!. It is readily shown that the
following relation holds:

P~X!5 (
uPQ~N!

F~u!u. ~A10!

If we substitute

xi , j ,u[H 1 if u and n,mPs

0 otherwise,
~A11!

for xi , j , the relation~A10! becomes

X~xi j 5xi , j ,u!5P„X~xi , j5xi , j ,u!…

5 (
u8<u

F~u8!5du,uN
. ~A12!

Equation~A12! is the sufficient condition~A4! of Eq. ~A1!.
Thus, Eq.~2.14! is proved.

APPENDIX B: A PROOF ON „2.27…

We prove~2.27!, that is,

uAs,s8~u!u5 (
lPL~u!

S I ~@l,u#! )
$s9,s-%Pl

xs9,s-D ,

~B1!
03610
where uPQ(N), s,s8Pu, xs,s8[xs8,s , xs,s[0, and
I (@l,u#) andAs,s8(u) are defined in~2.28! and ~2.29!.

Only the termsAs1 ,s1
(u), As1 ,s2

(u), As2 ,s1
(u), and

As2 ,s2
(u) contain the variablexs1 ,s2

, and the minor deter-
minant becomes

UAs1 ,s1
~u! As1 ,s2

~u!

As2 ,s1
~u! As2 ,s2

~u!U5~as1
1as2

!xs1 ,s2
1as1

as2
,

~B2!

where

as5L1 (
s8Pu,Þs1 ,s2

Ms8xs,s8 . ~B3!

The right-hand side of~B2! contains only the terms ofxs1 ,s2

and 1 when we regard the equation as a polynomial
xs1 ,s2

. Therefore, an exponent of a variablexs1 ,s2
in the

determinant~B1! is 1 or 0.
We define a set,

L8~u![$lul5$juj5$s,s8% s,s8Pu%%, uP$s%.
~B4!

While L~u! ~2.20! does not includel which contains rings of
connections,L8(u) does include such kinds ofl. In terms of
this set, the determinant is written as

uAs,s8~u!u5 (
lPL8~u!

S I 8~@l,u#! )
$s9,s-%Pl

xs9,s-D .

~B5!

Here I 8(@l,u#) is an undetermined function which is pro
jected on a polynomial ofL.

We make an assumption:I 8(@l,u#) is not zero on the
condition ofl that there existsl r such that

l r#l and the number of elements in

$sujPl r , sPj%<Mlr
. ~B6!

This assures that the connection patternl contains the rings
of connections. We define a set

l̄ r[l2l r . ~B7!

We can choosel r such that

jPl, j rPl r⇒jùj r5B. ~B8!

This means thatl r consists of some cluster ofl, and l r
contains some rings of connections. In this case, it is c
that

I 8~@l,u#!5I 8~@l r ,u#!I 8~@ l̄ r ,u#!L2N, ~B9!

and that
6-6
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uAs,s8
8 ~u,u8!u

5I 8~@l r ,u#! )
$s9,s-%Pl

xs9,s-

1 (
lPL8~u!,Þlr

S I 9~@l,u#! )
$s9,s-%Pl

xs9,s-D ,

~B10!

where

As,s8
8 ~u,u8!55

L if s,s8¹u8s5s8

(
s9Pu8

Ms9xs,s9 if s,s8Pu8s5s8,

2Ms8xs,s8 if s,s8Pu8sÞs8,

0 otherwise,
~B11!

u85$susPj, jPl r%, s,s8Pu.

I 9(@l,u#) is an undetermined function. From~B11!, we can
see that

(
sPu8

As,s8
8 ~u,u8!50 ~B12!

which indicates that row vectors of the matrix are linea
dependent;uAs,s8

8 (u,u8)u is identically zero. This negates th
assumption thatI 8(@l,u#) is not zero on the condition~B6!.
Therefore, we have

uAs,s8~u!u5 (
lPL~u!

S I 8~@l,u#! )
$s,s8%Pl

xs,s8D .

~B13!

A difference between~B5! and ~B13! is the region of sum-
mation overl. We notice that each term on the right-ha
side is not made from off-diagonal elements ofAs,s8(u); all
the terms which are made from off-diagonal elements
canceled by diagonal elements. Then, we have

FIG. 4. A graphical representation of one of the patterns wh
are summed up in the left-hand side of Eq.~C7!.
03610
e

uAs,s8
9 ~u!u5 (

lPL~u!
S I 8~@l,u#! )

$s9,s-%Pl

xs9,s-D
1 (

lPL8~u!
(

s1 ,s2Pu
I ~3!~ @l,u#,s1 ,s2!

3xs1 ,s2

2 )
$s3 ,s4%Pl

xs3 ,s4

1 (
lPL8~u!,¹L~u!

S I ~4!~ @l,u#!

3 )
$s9,s-%Pl

xs9,s-D , ~B14!

where

As,s8
9 ~u!5H L1 (

s9Pu

Ms9xs,s9 if s5s8,

0 if sÞs8,

and I (3)(@l8,u#,s1 ,s2) and I (4)(@l8,u#) are undetermined
functions. Therefore, we obtain

I 8~@l,u#![LN2MlS )
sPu

Ms
n~s,l!21D S )

s8Pg~@l,u#!

Ms8D
5I ~@l,u#!, ~B15!

and ~B13! with ~B15! proves~B1!.

APPENDIX C: A DERIVATION OF THE CLUSTER
INTEGRALS „3.6… AND „3.9…

First, we prove~3.6!. Substituting the expression ofZN in
~2.31! into ~3.4! yields

bN5 lim
L→`

(
uPQ~N!

~M u21!! ~21!Mu21 )
sPu

Ms!

LN!

3 )
sPu

(
u8PQ~Ms!

(
l8PL~u8!

J~@l8,u8# !S~@l8,u8# !.

~C1!

J(@l,u#) and S(@l,u#) are defined in~2.32! and ~2.33!.
Eliminating exponentially decreasing terms with respect
L, we have

bN5 lim
L→`

(
uPQ~N!

~M u21!! ~21!Mu21 )
sPu

Ms!

LN!

3 )
sPu

(
u8PQ~s!

(
l8PL~u8!

J~@l8,u8# !S`~@l8,u8# !.

~C2!

The integralS`(l,u) is defined in~3.7!.
We define

h

6-7
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G̃~@l,u#![H @l8,u8#U l85B, M u851, u8,u, jPl, s¹j
or

l8PG~l!, l8ÞB, sPu8, jPl8, sPj
J . ~C3!

In words,G̃(@l,u#) is a set of elements each of which consists of connection patternl8 and a setu8. Here,l8 is a cluster of
the connection patternl, andu8 is a subset ofu and is a set of elements that are linked with connections inl8. Note that
G̃(@l,u#) contains@B, $s%# whens is not connected byl.

From the definition, it is shown that the integralS`(@l,u#) is factorized into ‘‘connected’’ integrals as

S`~@l,u#!5 )
@l8,u8#PG̃~@l,u#!

S`~@l8,u8# !. ~C4!

Similarly, the coefficientJ(@l,u#) is factorized,

S (
sPu

MsD !J~@l,u#!5 )
@l8u8#PG̃@~l,u#!

S (
s8Pu8

Ms8D !J~@l8,u8# !. ~C5!

Due to ~C4! and ~C5!, the cluster integral~C2! can be rewritten as

bN5 lim
L→`

(
uPQ~N!

~M u21!! ~21!Mu21

LN! )
sPu

(
u8PQ~s!

(
l8PL~u8!

)
@l9,u9#PG̃~@l8,u8# !

S (
s9Pu9

Ms9D !J~@l9,u9# !S`~@l9,u9# !.

~C6!
t-
d

l
fir
t

o

n
n

We can show that for arbitrary functionsf 1(u), f 2(s),
We can show that for arbitrary functionf (@l,u#),

(
uPQ~N!

(
lPL~u!

)
@l8,u8#PG̃~@l,u#!

f ~@l8,u8# !

5 (
u9PQ~N!

)
s9Pu9

(
u8PQ~s9!

(
l8PLc~u8!

f ~@l8,u8# !.

~C7!

The left-hand side of~C7! is a summation over all the pa
terns which are generated by the following process: first
vide a set$1,...,N% into elements ofu, then connect them
with l. The right-hand side of~C7! is a summation over al
the patterns which generated by the following process:
divide a set$1,...,N% into sets ofu9 each of which is a direc
sum of elements connected by a clusterl8, second divide
each of the sets into elements ofu8, then define connection
patternl8, which consists of one cluster, of elements inu8.
Figures 4 and 5 illustrate graphical representations of b
sides of patterns in~C7!.

Due to ~C7!, the cluster integral~C6! becomes
03610
i-

st

th

bN5 lim
L→`

(
uPQ~N!

~M u21!! ~21!Mu21

LN!

3 )
sPu

(
u8PQ~s!

)
s8Pu8

Ms8!

3 (
u9PQ~s8!

(
l9PLc~u9!

J~@l9,u9# !S`~@l9,u9# !.

~C8!

We define a family of setsg̃(t),

g̃~t!5 HsUs5 ø
s8Pu8

s8 u8Pt J , ~C9!

where an element oft is also a family of sets. To repeat, a
element ofg̃(t) is a sum of sets of which a family of sets, a
element oft, consists. For example,

g̃~$$$1,2%,$3%%,$$4,5%,$6,7%%%!5$$1,2,3%$4,5,6,7%%.
~C10!
f
t-
FIG. 5. A graphical representation of one o
the patterns which are summed up in the righ
hand side of Eq.~C7!.
6-8
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(
u9PQ~N!

S )
s8Pu9

f 2~s8!D (
tPQ~u9!

f 1~ g̃~t!!

5 (
uPQ~N!

f 1~u! )
sPu

(
u8PQ~s!

)
s8Pu8

f 2~s8!.

~C11!

In the left-hand side of~C11!, one sums up all the pattern
which are generated by the following process: first div
$1, ... , N% into elements inu9, then make family of setst.
Each of the sets consist of some elements inu9, and g̃(t)
5u. In the right-hand side of~C11!, one sums up all the
patterns which are generated by the following process:
divide a set$1, ... ,N% into elements ofu, then divide each of
the elements inu into elements ofu8. Figures 6 and 7 illus-
trate graphical representations of both sides of pattern
~C11!.

Using a formula~C11! in ~C6!, bN becomes

bN5 lim
L→`

(
uPQ~N!

S )
sPu

Ms! (
u9PQ~s!

(
l9PLc~u9!

J~@l9,u9# !

3S`~@l9,u9# !D (
tPQ~u!

~M t21!! ~21!M t21

LN!
. ~C12!

Note that we have used a relationMg̃(t)5M t .
Substitutions ofLN/N! into ZN in ~3.4! and ~3.1! give a

relation

(
uPQ~N!

~M u21!! ~21!Mu215dN,1 . ~C13!

FIG. 6. A graphical representation of one of the patterns wh
are summed up in the left-hand side of Eq.~C11!.

FIG. 7. A graphical representation of one of the patterns wh
are summed up in the right-hand side of Eq.~C11!.
03610
st

in

Using this relation in~C12!, we finally obtain

bN5
1

L (
uPQ~N!

(
lPLc~u!

J~@l,u#!S`~@l,u#!, ~C14!

which is ~3.6!. Note that the right-hand side of Eq.~C14!
does not depend onL. Therefore, we do not write limL→`

any more.
In the no-interaction limit, where (dD/dk)(k) is replaced

with d(k), Eq. ~C14! gives

1

N
5 (

uPQ~N!
(

lPLc~u!

1

~N21!!

3S )
sPu

Ms
n~s,l!21~21!~Ms21!~Ms21!! D .

~C15!

Next, we prove~3.9!. We define

D~@l,u#,l8!

5@l9,u9#

[F H $s1 ,s2%Us1 ,s2Pg~@l8,u#!

s3,s1 s4,s2

$s3 ,s4%Pl,¹l8
J , g~@l8,u#!G ,

l8#l. ~C16!

u9 is a set of a direct sum of elements linked with one clus
in l8, andl9 is a connection pattern of a setu9. A connec-
tion in l9 links two elements ofu9, where elements ofu,
each of which is a subset of one of the two elements,
connected byl. For example,

h

h

FIG. 8. A graphical representation of@l99 ,u9# in ~C17!.

FIG. 9. A graphical representation of@l98 ,u98# in ~C17!.
6-9
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FIG. 10. A graphical represen
tation of one of the patterns which
are summed up in the left-han
side of Eq.~C24!.
ide
rn

f
ing

t

in
e of

ides

-

D~@l99 ,u9#,l9!5@l98 ,u98#, ~C17!

where

l95$$$1,2%,$3%%,$$1,2%,$4%%,$$5,6%,$7,8%%%, ~C18!

u95$$1,2%,$3%,$4%,$5,6%,$7,8%,$9%%, ~C19!

l995 H $$1,2%,$3%%,$$1,2%,$4%%,$$1,2%,$7,8%%,
$$4%,$9%%,$$5,6%,$7,8%% J ,

~C20!

l985$$$1,2,3,4%,$5,6,7,8%%,$$1,2,3,4%,$9%%%, ~C21!

u985$$1,2,3,4%,$5,6,7,8%,$9%%. ~C22!

Figures 8 and 9 illustratey@l99 ,u9# and @l98 ,u98# in ~C17!.
By substituting K(k)12pd(k) into (dD/dk)(k), Eq.

~C14! is changed into

bN5
1

L (
uPQ~N!

(
lPLc~u!

J~@l,u#! (
l8#l

S8̀ ~D~@l,u#,l8!!,

whereS8̀ (@l,u#) is defined in~3.11!. With the explicit ex-
pression ofJ(@l,u#), we have

bN5
1

~N21!! (
uPQ~N!

(
lPLc~u!

(
l8#l

S8̀ ~D~@l,u#,l8!!

3 )
sPu

Ms
n~s,l!21~21!~Ms21!~Ms21!!. ~C23!

We can show that for arbitrary functionsf 1(n,s) and
f 2(@l,u#),
03610
(
uPQ~N!

(
lPLc~u!

(
l9#l

f 2~D~@l,u#,l9!! )
sPu

f 1~n~s,l!,s!

5 (
u8PQ~N!

(
l8PLc~u8!

f 2~@l8,u8# !

3 )
s8eu8

(
u9PQ~s8!

(
l9eLc~u9!

(
s1 ,...,sn~s8,l8!Pu9

3 )
seu9

f 1S n~s,l9!1 (
i 51

n~s8,l8!

ds,s i
,s D . ~C24!

The meaning of the left-hand side of~C24! is to sum up all
the patterns generated by the following process: first, div
a set into elements ofu; second, define a connection patte
l; then makeu8 andl8 join elements ofu together which are
connected withl9. The meaning of the right-hand side o
~C24! is to sum up all the patterns generated by the follow
process: first, divide a set into elements ofu8; second, make
a connection patternl8; third, divide each element of the se
u8 into elements ofu9; fourth, define connection patternl9
on elements ofu9 each of which is a subset of an element
u8; then connect elements each of which is a subset of on
two elements inu8 linked with a connection patternl8. Fig-
ures 10 and 11 show graphical representations of both s
of patterns in~C24!. Equation~C24! is similar to ~C11!, in
the sense that iff 1(n,s) and f 2(@l,u#) in Eq. ~C24! are
independent ofn and l, there is no connection pattern de
pendence, then Eq.~C24! becomes~C11!.

By use of~C24!, we rewrite~C23! as
bN5
1

~N21!! (
uPQ~N!

(
lPLc~u!

S8̀ ~@l,u#! )
sPu

(
u8PQ~s!

(
l8PLc~u8!

(
s18 ,...,s8n~l,u!Pu8

)
s8Pu8

M
s8

n~s8,l8!1( i 51
n~s,l!ds8,s i8

21

~21!Ms821

3~Ms821!!.

Since

(
s1 ,...,snPu

)
sPu

M
s

( i 51
n ds,s i5S (

sPu
MsD n

, ~C25!

bN becomes
6-10
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FIG. 11. A graphical represen
tation of one of the patterns which
are summed up in the right-han
side of Eq.~C24!.
bN5 (
uPQ~N!

(
lPLc~u!

S8̀ ~@l,u#!
1

~N21!! )
sPu

Ms
n~s,l!

3 (
u8PQ~s!

(
l8PLc~u8!

S )
s8Pu8

Ms8
n~s8,l8!21

3~21!Ms821~Ms821!! D . ~C26!

Using the relation~C15!, we arrive at~3.9!,

bN5
1

L (
uPQ~N!

(
lPLc~u!

J8~@l,u#!S8̀ ~@l,u#!, ~C27!

whereJ8(@l,u#) is defined in~3.10!.

APPENDIX D: THE CLUSTER INTEGRAL „3.9… BY USE
OF THE TBA

A result of the bosonic formulation of the TBA@5# is

pb52E dk

2p
log„12z exp~2b„k21p~k!…!…, ~D1!

where

p~k!5
1

b E dq

2p
K~k2q!log„12z exp~2b„q21p~q!…!….

~D2!

We define a function

FN~k![
1

N!

]N exp„2bp~k!…

]zN U
z50

, ~D3!

and prove that
03610
FN~k!5
1

N! (
uPQ~N!

(
lPLc~u1!

S )
sPu,sÞ$0%

~Ms21!!

3Ms
n~s,l!21D S̃~@l,u#,k,$0%!, ~D4!

F0~k!51, ~D5!

where forsPu,u1[uø$$0%%,

S̃~@l,u#,ks,s!

[E )
s8Pu,s8Þs

dks8
2p S )

$s8,s9%Pl

K~ks82ks9!D
3expS 2b (

s8Pu,s8Þs

Ms8ks8
2 D . ~D6!

It can be easily checked that~D5! is true.
From Eq.~D2!, a recursive relation forFN(k) is obtained

as

FN~k!5
1

N! (
uPQ~N!

)
sPu

E dqs

2p
K~k2qs!

3 (
u8PQ~Ms!

~M u821!!exp~2bM u8qs
2 !

3 )
s8Pu8

Ms8!FMs821~qs!. ~D7!

Substituting the expression ofFN(k) in ~D4! into FMs21(q)
in ~D7!, we obtain
6-11
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FN~k!5
1

N! (
uPQ~N!

)
sPu

E dqs

2p
K~k2qs! (

u8PQ~Ms!

~M u821!!exp~2bM u8qs
2 !

3 )
s8Pu8

Ms8 (
u9PQ~Ms821!

(
l9PLc~u19 !

S )
s9Pu9,Þ$0%

~Ms921!! Ms9
n~s9,l9!21D S̃~@l9,u19 #,qs ,$0%!. ~D8!

For noninteger argument ofQ~s!, ~D8! becomes

FN~k!5
1

N! (
uPQ~N!

)
sPu

E dqs

2p
K~k2qs! (

u8PQ~s!

~M u821!!exp~2bM u8qs
2 !

3 )
s8Pu8

(
nPs

(
u9PQ~s82$n%!

(
l9PLc~u9ø$$n%%!

S )
s9Pu9,Þ$n%

~Ms921!! Ms9
n~s9,l9!21D S̃~@l9,u9ø$$n%%#,qs ,$n%!.

~D9!

We can show that

(
u9PQ~N!

f 1~M u9! )
s9Pu9

(
nPs9

(
u-PQ~s92$n%!

(
l-PLc~u-ø$$n%%!

f 2~@l-,u-ø$$n%%#,$n%! )
s8Pu-,Þ$n%

f 3~n~s8,l-!,s8!

5 (
uPU~N!

(
lPLc~u!

(
sPu

Ms
n~s,l! f 1~Ms! f 2~@l,u#,s! )

s8Pu,Þs

f 3~n~s8,l!,s8!, ~D10!

FIG. 12. A graphical representation of one
the patterns which are summed up in the le
hand side of Eq.~D10!.
ide
t-

di-
where f 1(n) and f 3(n,s) are arbitrary functions, and
f 2(@l,u#,s) is a function which satisfies

f 2~@l,u#,s!5)
i

f 2~@l i ,u i #,s i !,

~D11!
l5ø

i

l i , u5ø
i

~u i2$s i%!ø$s%, s5ø
i

s i ,
03610
sPu, s iPu i .

The meaning of the right-hand side of~D10! is to sum up all
the patterns generated by the following process: first, div
a set$1,...,N% into sets ofu; second define a connection pa
ternl which consists of one cluster; then choose one sets in
u. The meaning of the left-hand side of~D10! is to sum up
all the patterns generated by the following process: first,
-

d

FIG. 13. A graphical represen
tation of one of the patterns which
are summed up in the right-han
side of Eq.~D10!.
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vide $1,...,N% into sets ofu9 each of which contain one ele
mentn in thes chosen in the right-hand side and elements
which some sets inu consists. Thes chosen in the right-
hand side is not one of these sets, and these sets are
nected with each other by connections inl and any sets are
connected with thes by connections inl. Second, divide
each of sets in u9 into sets of u8 and $$n%%.
tio

03610
f

on-

Then, define a connection patternl9 of sets inu- and$$n%%.
The connection patternl9 consists of one cluster. Figures 1
and 13 illustrate graphical representations of both sides
patterns in~D10!. Note that if one chooses a right-hand si
pattern, there exist the correspondingMs

n(s,l) left-hand side
patterns.

Applying the relation~D10! to ~D9!, we have
FN~k!5
1

N! (
uPQ~N!

)
sPu

E dqs

2p
K~k2qs! (

u8PQ~s!
(

l8PLc~u8!
(

s8Pu8
Ms8

n~s8,l8!
~Ms821!! exp~2bMs8qs

2 !

3S̃~@l8,u8#,qs ,s8! )
s9Pu8,s9Þs8

~Ms921!! Ms9
n~s9,l8!21

5
1

N! (
uPQ~N!

)
sPu

(
u8PQ~s!

(
l8PLc~u8!

(
s8Pu8

E dqs8
2p

K~k2qs8!Ms8
n~s8,l8!

~Ms821!!

3exp~2bMs8qs8
2

!S̃~@l8,u8#,qs8 ,s8! )
s9Pu8,s9Þs8

~Ms921!! Ms9
n~s9,l8!21

5
1

N! (
uPQ~N!

(
lPL~u!

(
@l8,u8#PG̃~@l,u#!

(
s8Pu8

E dqs8
2p

K~k2qs8!Ms8
n~s8,l8!

~Ms821!!

3exp~2bMs8qs8
2

!S̃~@l8,u8#,qs8 ,s8! )
s9Pu8,s9Þs8

~Ms921!! Ms9
n~s9,l8!21. ~D12!
The second equality is due to a replacement of integra
variables fromqs to qs8 , and the relation~C7! is used in the
third equality.

By definitions, the following relation can be shown:

S̃~@l8,u1#,k,$0%!5 )
@l i ,u i #PG̃~@l,u#!

E dqs i

2p
K~k2qs i

!

3exp~2bMs i
qs i

2 !S̃~@l i ,u i #,qs i
,s i !,

l8PLc~u1!, lPL~u!, s iPu i , l85løø
i
$s i ,$0%%.

~D13!

Using relation~D13! in ~D12!, we obtain

FN~k!5
1

N! (
uPQ~N!

(
lPLc~u1!

S )
sPu,sÞ$0%

~Ms21!!

3Ms
n~s,l!21D S̃~@l,u1#,k,$0%!. ~D14!

We see that~D14! is equal to~D4!. Therefore, Eq.~D4! is
recursively proved.

From ~D1!, we have
n
bN5E dk

2p (
uPQ~N!

exp~2M ubk2!
~M u21!!

N!

3 )
sPu

Ms!FMs21~k!. ~D15!

Substituting the expression ofFN in ~D4! into FMs21 in

~D15! gives

bN5E dk

2p (
uPQ~N!

exp~2M ubk2!
~M u21!!

N!

3 )
sPu

Ms (
u8PQ~Ms21!

(
l8PLc~u18 !

3S )
s8Pu8,s8Þ$0%

~Ms821!! Ms8
n~s8,l8!21D

3S̃~@l8,u18 #,k,$0%!. ~D16!

Using the relation~D10!, we have
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bN5 (
uPQ~N!

(
lPLc~u!

(
sPu

E dk

2p
exp~2Msbk2!

3Ms
n~s,l!

~Ms21!!

N!
S̃~@l,u#,k,s!

3 )
s8Pu,s8Þs

~Ms821!! Ms8
n~s8,l!21. ~D17!

Since the relation

S8̀ ~@l,u#!5E dqs

2p
exp~2bMsqs

2 !S̃~@l,u#,qs ,s!,

~D18!
lPLc~u!, sPu,

holds, we arrive at
03610
bN5
1

N! (
uPQ~N!

(
lPLc~u!

S (
sPu

MsD
3S )

sPu
~Ms21!! Ms

n~s,l!21DS8̀ ~@l,u#! ~D19!

5
1

~N21!! (
uPQ~N!

(
lPL~u!

S )
sPu

~Ms21!!

3Ms
n~s,l!21DS8̀ ~@l,u#!, ~D20!

whereS8̀ (l,u) is defined in~3.11!. This expression of the
cluster integralbN is the same as~3.9!.
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