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Partition function for a one-dimensional é-function Bose gas
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TheN-particle partition function of a one-dimension&afunction Bose gas is calculated explicitly using only
the periodic boundary conditiofthe Bethe ansatz equatiomhe N-particles cluster integrals are shown to be
the same as those by the thermal Bethe ansatz method.
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[. INTRODUCTION calculate theN-particle cluster integrals using the partition
function. An explicit calculation for theN-particle system
Extending the work by Lieb and Linigdrl], Yang and has been done. The results are compared with those given by
Yang [2] presented an ingenious method to study the equithe TBA. We prove that both results completely agree. The
librium thermodynamics of a one-dimensional system oflast section is devoted to concluding remarks. Technical de-
bosons with repulsives-function interaction. The Hamil- tails of calculations are summarized in Appendixes A-D.
tonian of the system is

’ II. N-PARTICLE PARTITION FUNCTION

N
J
HN:_Z WJFKZ 5(Xj_xi)>| (1.1 We study a statistical mechanics of the quantum
s N-particle system(1.1). Let E, L, and{k;} denote the total

where is the coupling constant and is assumed to be posi(_anergy, the system size, and the wave numbers. It is known

tive. Throughout the paper, the Planck constant and the ma%%aththef tlftal_ ener?y_and. the wave numbers are determined
of a particle are chosen to lie=1 and 2n=1. This system °Y the following relations:
is a first quantized version of the nonlinear Sclinger N
model described by the Hamiltonian operator EZE kiz, 2.
i=1

H= [ @] bt s 6" b9, 1.2

Lki=2mni+ 2, A(ki—k)— >, A(k—k)), (2.2
where ¢(x,t) and ¢*(x,t) are boson field operators. The I<i 1=
method invented by Yang and Yang is called the thermal . . .
Bethe ansatZTBA) method since it starts from the Bethe where{n;} are integers satisfying the condition,
ansatz wave functiof8] and enables us to calculate the ther-
modynamic quantities at finite temperature. While there have
been many successful applications to quantum particle an . : .
spin systems, not much study on the method itself has bee%ndA(k) is the phase shift for two-body scattering,
done. A crucial assumption is the form of the entropy.
Thacker[4] studied thes-function Bose gas in infinite vol- A(k)=—2tan?!
ume by the field-theoretic perturbation method and repro-
duced the results of the TBA method. One of the authorsl_ . . . .
(M.W.) [5] presented a bosonic formulation of the TBA he relation(2.2) is obtained from the periodic boundary

method and calculated the grand partition function of thecondition imposed on thé\-particle eigenfunction and is

system at infinite volume. In this paper, we calculate eXplic_called the Bethe ansatz equation. The range of the function

itly the N-particle partition function of the Hamiltoniafi.1) (2.4) is assumed to be-2m, 0), and this phase shift is not a

under the periodic boundary condition. That is, the assump.'U€" One in the sense of Re{5]. That is, the phase-shift
unction (2.4) has analyticity on the real axis. The appear-

tions of the TBA method are not used and all the calculationg f onlv th bod . implies the f
are carried out exactly at finite volume. A preliminary result &NC€ ot only the tW(.)' 0 Wat”?( in (2.2) implies the fac-
for N=2, 3, 4 has been reported in RES]. torization of Smatrices, which is one of the remarkable

properties of integrable systems.
The partition function for thé\-particle system is defined

Ni=Niyq, (2.3

. (2.4)

K
k

The outline of the paper is the following. In Sec. II, we
present a method to evaluate the partition function for thj)
N-particle system. A key idea is that we use only the periodi y
boundary condition of the wave function. In Sec. lll, we N

Zn=2 exp( B2 k?) , 25
o
J
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1 A(K)=A (k) + (2.9
B= KeT’ (2.6

the periodic boundary conditiof2.2) is changed into
and the summation is over all possible configurationgnof
under the condition(2.3). Without recourse to the TBA -
method, we calculate the partition functi@g only by using Lkj=277;+ >, A(k;—k;). (2.9
the relationg2.1)—(2.4). We explain a method in three steps. 17

We interpret(2.9) as analytic relations between real numbers

A. Change of summation {fi;} and {k;}. From the symmetry of2.9), we see that,

In terms of new variable and function, when AL TN | TN PN 4 Y corresponds to
{Ke,ookis K kg {Rig,. Ry, TR should

o _m+ﬂ 2.7 correspond tdKy, ... Kj ... Ki ... .Kn}-
moom 27 ' It is convenient to introduce the following set function:

neoc, ' €6, nec’ (2.10
O_//,O_//l e 0’ 0_”#()_///:> nII e ()_Il, n/// e O_I//' n//¢ n/// . .

@(U)EM

A domaino of the function is a family of arbitrary finite sets. TCL PR s O OO YR (PR A RN O N
The first conditionne 0,0’ € ,ne o', means that the sum (2.16
of the elements ind is o. The second conditiong”,c”

€f,0"#d"=n"eo",n"ed”,n"#n"”, means thatthe sum Here and hereafter, the number of elements in acsé
is a direct sum. That is, the imag¥(o) is all the families of  genoted byMm .

sets whose direct sum is the set If the argument is an By use of the formula(2.14, the partition function is
integer, we define rewritten as

O(N)=0({1,2,...N}). (2.11 N
For example, ZN=___H_>; o EXP( —ﬂjzl kJZ)
0(9)>{{1,2,{3}.{4}.{5.6/.{7.8.{9}}=65. (2.1 1 N
— ~ 2
Figure 1 illustrateg)y in (2.12. And we define a symbol, for N WQE%(N) F(G)E (0,{ni})ex;{ _le i ) :
arbitrary functionf(nq,...,ny),
(2.17
2 (04nPf(ng,..ny= X f(ng,..ny),

{n,},oeb
. (2.13
e ®(N), nj=n,,ieo. To evaluate(2.17), we have a useful formula,

B. Replacement of summations by integrals

This symbol,=(68,{n;})f(n;), indicates that a functiof is
summed up over alh; on the condition thah;=n, if an
element which contains bofhandk exists.

The following formula can be prove@ppendix A): if |f(n)|<exp(—rn?), r>0. (2.18

2 f(nl,...,nN) @
ny<...<ny

1
=N 2 F(O2 (6{n)hf(n....ny),
S 0eO(N)

(2.1 |
0

F<0>=H0<—1)(Mfl><M(,—1>!, (2.19

f(n)= E fw dn’ f(n")exp(—2ainn’)

n=integer n=integer J —

FIG. 1. A graphical representation of a ggtin (2.12.
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This can be proved by the Fourier transform and the Jacobi’s imaginary transformation for elliptic theta functions. Applying
the formula(2.18, we replace summations {2.17) by integrals,

1
Zy=rr > F(O) 2 (—1)N Ve | [T diijexp (—Bk§—2wiﬂaﬁé))- (2.19
N! 0e O(N) {n 1,00 oeb ogef
To proceed further, we define four symbols.
First,
_ A={¢|é={o,0'} 0,00}
A(a)z[)‘)\’g)\the number of elements v|éeN’ oeé&>M, .|’ (2.20
0={0q1,0,,...}.

The set functionA(6) consists of elementa. N contains GM={N"CA{o,0'Yel, {o,0"}eN'={0,0"}eN'},
elements, each of which has two elements o’. We call ¢

connection between the two elemeatss’. The connectivity

. . NeA JTo,. ). 2.2
is referred to as the pattern of connection§d) represents a eA{o1,02,.1) (.23

set of all the patterns of connections that have no ring of thq_h tis G(\) mean t of connection pattern h of
connections. In Fig. 2, the connection and ring of connec- at is, G(1) means a set of connection patterns each o

: : . which is a cluster of the connection pattexn Here, the
tions are illustrated: cluster means that if two connectiogs and & in \ are
linked with a common element, then& and ¢ are in the

A(6g) 5 {{{1,2,{311,{{1,2{4}}.1{5,6.{7.8}} =\q. same cluster. For example,
(2.21)
G(\o)= {{{1,2.{3}}.{{1,2.{4}}}. (2.24)

The pattern of connectiong is shown in Fig. 3. As a special A pattern of no connection is included @(\).

ca%e,A(a) contains a pattern of no connection, i.A.(6) Fourth,
sd.
Second, o(Th. 6)
ocel, e\, o3¢
n(o,\)=the number of elements ihé|é={o,0'}, E{U N GO, N2 on U (a'Us™
o' e{oy,0,,...}, e}, {0/ 0" N’
222 6={01,05,..}, AeA(h). (2.25

06{01,0'2,...}, )\EA({Ul,Uz,...}). . ) ) ) )
[\, 6] means thak is consistent withg; an element which is

linked with \ is in 6. g([\, 6]) indicates a set of direct sum
In words,n(o,\) is a number of elements which are linked “elements of @’ which are connected by one cluster in the
with . connection patterm. The reason why an element is quoted
Third, here is that the element, at the same time, is a set. If an
element of# has no connection, the “element” belongs to

g([A,6]). For example,
f@% o([ro 6))={{1234.(567.8.9}}. (226
@—/ /\%/ The following formula is provedsee a proof in Appendix
B):

|A(r,(r’(0)|: |([)\,0]) H X(r”,(r’” ’
Z NeA(6) {o" c"} e\

Connection

(2.27
FIG. 2. The connection and the ring of connection. with
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l([x,aDELN-Mx(H M';W'M-l)( I M)
e o <allhon "element"
OO0
AU‘U,(Q): L+(r%g MU”XU’G” if 0'=o",, Connection  Connectiol Cluster
_M ' X

oo if oo’ [ ‘
o2 0
0.

0cO(N), 0,0'€6, Xgo=Xg' o1 Xgo=

o,0

Using the formula(2.27), we change variables i2.19
from {fi;} to {k;}. In terms of the above introduced symbols, Cluster

we obtain ] ]
FIG. 3. The pattern of connectiof\g,fy] in (2.21). Here,

1 [Ag,60o] indicates that 4 is consistent withdg .
Zy=pg . 2 F(O) 2 (=1 Ve

F 6=6(N) (N} oe6 when an integral path is moved, there is a residue in the

k, region surrounded by the initial and final integral paths. It is

X H - 2 ) I([A,0]) important to note that each integral path(;h30 does not

Feo 2 \ERo step over any residue by this change of the integral path.

Performing the change of integral paths as introduced
x| 11 W(kg—kgr)) ex;{ > ‘ - BM K2 above, we arrive at an expression of the partition function,
{o,0'}eX oE
~ ZN= J([\, 6 N, 0 2.3
—ing<Lkg— > MU,A(kU,—kU))] . (2.30 N e%m) xe%o) (D oDSIN D (23D
o' el +o
) ] ) ) _with
F(6) is defined in(2.15. Note that because of a relation, if
T;=1;, thenk;=k;, the Jacobian of the transformation can LN’ =My,
be written explicitly. J([)\’g])ET , 11 MU,)
o' eg([\,6])
C. Change of integral paths
We change the integral paths (.30 from {(—o, %)} to X Hg M TN (— 1) Mo V(M — 1)1 )
{(——(Ln,/2BM)i,»—(Ln,/28M,)i)}. In what fol- 7<
lows, “an integral path steps over a residue,” means that (2.32
|
L2 n2 dk dA Ln Ln,.
\,0])= —1)(N'"V3ceioexpg —— ")f — —(k Kyt — oo i+ o i)
sive)= &, Y w2, ) | sl o zgm
xexg > M, K2+in, S M A[ K, —k,— e SN 2.3
ex =, B oo ng o' el #FoVo o’ o ZBMUI ZBMU’I ’ ( . 3)
|
UL,
N’EEQMU. (2.34 Iim¥<A(ﬁ), n=0.

Lo

This formula enables us to calculate the partition function;; should be remarked thad.. for arbitrary n is explicitly
in any order of the system size In another way of writing,  5ytained from(2.31)—(2.34. "
we can calculate the partition function for the system with
finite size as
Ill. CLUSTER EXPANSION

n |_2 . . . .
ZN:; U,{L,,B)exp{ _ 4N,6’>’ (2.39 byThe cluster expansion for the equation of state is defined

036106-4
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o0

E (ZNZN))

N=0

pB=lim L tlog

L—ow

(3.2

Nby, (3.2

=2

N=1

wherez is the fugacity(rigorously, the absolute activity
z=exp Bu). (3.3

The partition function{Zy} and the cluster integrdby}
are related as

(M= D1 (=DM ] ™!

ogel
by= lim
N L*}OCHE%N) LN'

II zy .

ogef
(3.9

Expanding the right-hand side of E®.1) in powers ofz and

PHYSICAL REVIEW E 63 036106

L
I 6D= =7 (H MG MM, - )),
(3.10
11 K(ka—kg,))

ged <{(r,<r'}e)\

xexp > (

gel

sinon= 11

— BM k2 ) (3.11)

A proof of Eq. (3.9 is given also in Appendix C.

The cluster integral63.9) agree with those derived by the
TBA method(see Appendix D for detail calculatipnin this
way, we have proved that the thermal Bethe an$aB&A)
method by Yang and Yang gives the exact equation of state.

IV. CONCLUDING REMARKS

Taking a one-dimensional-function Bose gas as a typi-
cal example of integrable systems, we have derived the

combinatorially summing up the coefficients, we can proven-particle partition function. A method in this paper, referred

the relation(3.4).
We define that
Ad()={AINeA(6)

Mg(}\’g)zl}. (35)

A(0) is a set of connection patterns which consist of on
cluster (this cluster has nothing to do with the cluster inte-

gral.
Substituting the expressiof2.31) of Zy into (3.4), we
obtain

1
>IN, 6D)S.(IN,6]),

L 0<O(N) Achg(0)

whereJ(\, ) is defined in(2.32), and

dA
11 W(kg—kgo)

{o,0'}eX

dk,
S.([N,0])= (L[oﬁ(

xexp 2 (—BMgk§)>- (3.7

oeb

This is proved in Appendix C.

To compare the results in this paper with those in [Ref.

we define a functiorK (k) by

dA(K)

i 2Tk =K(K).

(3.9

Note that for the noninteracting cas€(k)=0.

In term of K(k), the cluster integraby can be expressed

as follows:

1
by={ I[N, 6D SN, D),
0 O(N) NeA(0)

(3.9

with

to as the direct method, is an exact analysis of the partition
function only based on the periodic boundary condition. Us-
ing the explicit expression of the partition function, we have
calculated theN-particle cluster integral, and proved a per-
fect agreement between the results of this direct method and

&he thermal Bethe ansafZBA) method.

The extensions and applications of the direct method to
integrable and nonintegrable systems may clarify mathemati-
cal structures of the TBA method. Those problems are left
for future studies.
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APPENDIX A: A PROOF ON (2.19
We prove(2.14), that is,

1
2 =g 2 FOX (6{n))
* 0eO(N)

n<---<ny

Xf(ng,....nN), (A1)
whereF(6) and=(6,{n;}) are defined in2.15 and(2.14),
andf(ny,....n;,...,nj,...,ny) satisfies
f(ny,...np,ong,ong) =f(ng,onj, N, ny).
(A2)

We define a semiorder on a st O (N),

def

0<bs0'€l', o€, o' Co. (A3)

A sufficient condition of Eq(A1l) is

036106-5
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2 F(0)=854, 0cON), (A4)
0'<0
where
on={{1}.{2}.... {N}}, (A5)
/0 if =20y,
%.0=]1 otherwise. (A6)
We consider a function,
N j—1
X(pxh=11 (1—21 xi,,-) (A7)
and a mappind,
P:h({x, H—> m6;, 6;,cO(N) (A8)
which satisfies the following relations:
P(hy+hy)=P(hy) +P(hy),
P(nh)=nP(h), (A9)

P(H xni,mi)=g<[{§|g={{ni},{mi}}},eND,

where h,h;,h, are arbitrary polynomial functions, and

g([\,d]) is defined in(2.25. It is readily shown that the
following relation holds:

P(X)= > F(0)6. (A10)
9 O(N)
If we substitute
1 if @ andnmeo ALL
Xii6= |0 otherwise, (A1)
for x; j, the relation(A10) becomes
X(Xij =X j,0)=PX(Xi j=Xi j.0)
= 2 F(0)=344, (A12)
0'<6

Equation(A12) is the sufficient conditiorfA4) of Eq. (Al).
Thus, Eq.(2.14) is proved.

APPENDIX B: A PROOF ON (2.27
We prove(2.27), that is,

I I Xo.rr‘o.m y

{U‘”,(TW} e

|A0',o"(6)| = z

NeA(6

) I([X,6])
(B1)

PHYSICAL REVIEW E 63 036106
where e O(N), o0,0'€8, X, =Xy 51 Xq4,=0, and
I([\,60]) andA, . (6) are defined in(2.28 and(2.29.

Only the termsA,,l,(,l(e), A(,l,(,z(e), A(,Z,Ul(e), and
Agz,gz(a) contain the variable(,,lygz, and the minor deter-
minant becomes

Aal,al( 0) Azrl ,0'2( 0)

+a
AO'Z,(Tl( 0) A0'2 ,0'2( 0)

01,09

= (@, + )X

U'la()'z’

(B2)

where

>

o' e 0,#01,0,

01(,=L+ M(r’X(r,(r’ . (BS)

The right-hand side ofB2) contains only the terms o,
and 1 when we regard the equation as a polynomial of
Xoy .0y Therefore, an exponent of a variablgl,(,2 in the
determinantB1) is 1 or 0.
We define a set,
AN (O)={\N={¢&é={0,0'} o,0'€b}}, 0Oe{o}.
(B4)

While A(6) (2.20 does not includa which contains rings of
connectionsA’(6) does include such kinds af In terms of
this set, the determinant is written as

I I XO'",U'W .

{U’”,O’m} e

|A0',0"(0)|= E

NeA'(6)

1"([N, 6])

(B5)
Here l'([\,6]) is an undetermined function which is pro-
jected on a polynomial of.

We make an assumption!([A,6]) is not zero on the
condition of\ that there exista., such that

AN CN and the number of elements in

{olée\,, o€ =M, . (B6)

This assures that the connection pattercontains the rings
of connections. We define a set

AN=A—N\,. (B7)
We can choose, such that
e, grE)\rﬁgmgr:@- (88)

This means thah, consists of some cluster of, and \,
contains some rings of connections. In this case, it is clear
that

(DN 6D =1"(In 6D ([N, 6L, (BY)

and that

036106-6
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(A3, 053]
) (

@@@ OLRO
SobMono

Y PLe] [ 6]
[, 6]

FIG. 4. A graphical representation of one of the patterns which

are summed up in the left-hand side of EG7).

|A(’7’,0”(0’01)|
SLK(RORC T [
{U//,(T///}E)\

+ (6 TT Xer o]

NeA'(6), %N, (0" 0" e\

(B10)
where
L if o,0/ ¢80 c=0'
’ Mrr”xrr,(r" if O',O'IEG,O':(T’,
AU’U,(Q,G,)Z " eo’

M X o if o,0'eb’ o#0’,

0 otherwise,

(B11)

0'={oloecé& &e\}, o,0 €.

I”([\,#0]) is an undetermined function. Fro(B11), we can

see that

> Al _(6,0)=0 (B12)

oect’

PHYSICAL REVIEW E 63 036106

AL (0= X (I’(D\,ﬁ]) I1
NeA(6)

XUJI s a_”/
€ {o", 0" en

|(3)([)\!0]!0-110-2)

+ XX

NeA'(9) 01,02€0

2

X
oq,0 04,0,
SR T T W

+ 2 14X, 0])
AeA'(0),eA(0)
x |1 x(,,,,(,,,,>, (B14)
{0’”,0’”’} E}\
where
. L+ > MgiXgor if o=0',
AO,'U,(e): o"eb
0 if o#0o’,

and 1®([\',6],01,05) and I *)([\’,6]) are undetermined
functions. Therefore, we obtain

l'([x,eDELN-M»( I1 Mﬂ“””‘l)( I1 M[,,>
ged o' eg([\,6])
=1([N,6]), (B15)

and (B13) with (B15) proves(B1).

APPENDIX C: A DERIVATION OF THE CLUSTER
INTEGRALS (3.6) AND (3.9

First, we prove(3.6). Substituting the expression @f; in
(2.39) into (3.4) yields

<M9—1>!<—1>Mv*1H0 M,!

bN:L"I::c ae%(m LN!
<[ X > JINLODSIN,6'D).

70 9’ cO(M,) N eA(0)
(CY

which indicates that row vectors of the matrix are IinearIyJ(D\ 6]) and S([\,6]) are defined in(2.32 and (2.33.
dependentA .(6,0')| is identically zero. This negates the gjiminating exponentially decreasing terms with respect to

assumption that’ ([ \, ]) is not zero on the conditio(B6).
Therefore, we have

ll([)\ve]) H Xa’,(r’ .
{o,0'}eX
(B13)

|A(r,u"(0)| =
NeA(6)

A difference betweeriB5) and (B13) is the region of sum-
mation over\. We notice that each term on the right-hand

side is not made from off-diagonal elementsfQf . (6); all

L, we have
(M=t (=)™ 2] M,
. oeb
bN:Llinoc 9SB(N) LN!
[T 2 2 3\, 0DS.(\, 0.

ged 0'c@(a) N eA(b)

(C2

the terms which are made from off-diagonal elements ardhe integralS..(\,0) is defined in(3.7).

canceled by diagonal elements. Then, we have

We define

036106-7
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N=0, Mg=1, 0'C6H, ée\, o¢é
G([\, 6)=4 [\',0'] or : (C3)
NeG(N), N+, ogeb’, ée)N, ogeé&

In words,G([\, 6]) is a set of elements each of which consists of connection patteamd a se®’. Here,\' is a cluster of
the connection patterN, and 6’ is a subset of and is a set of elements that are linked with connections’inNote that

G([\,6]) contains[&, {o}] when ¢ is not connected by.
From the definition, it is shown that the integ@l([ \, 8]) is factorized into “connected” integrals as

S.([\,0]) = I1 S.([N',6']). (C4

[N,0"1eG([\,60])

Similarly, the coefficientI([\, 0]) is factorized,

Zm

o= 11 (2 MU/)!qu',a']). (e)

[\ 6'1eG[(N,0]) \o'cd’

Due to(C4) and(C5), the cluster integralC2) can be rewritten as

. (Mﬁ_l)!(_l)Mg_l "o n oo
by=lim >, N I > = II 2 My [N, 67])SH([N,6)).
L—ofeB(N) ' T€0 9'e@(a) N eA(0') [\",6"]eG(N,0']) \o"ed
(C6)
|
We can show that for arbitrary functidi{[\, 8]), (My—1)1(—1)Me~1
bN: ||m
Lo B O(N) LN!
> X IT .o
00N XeA6) [\" p']eG([N,0]) [T 2 11 m,
0el 9 cO(0) o' b’
=2 II 2 X (e
0"cO(N) o"cd" 6" cO(d") )\'EAC(H’) X 2 2 J([}\",GH])SOC([)\",0”]).
”EG) (T’ ”EA !’
C7) 0 (") N c(0")
(C8)

The left-hand side ofC7) is a summation over all the pat- We define a family of set§(7),
terns which are generated by the following process: first di-
vide a set{1,...N} into elements of¢, then connect them Q(T):{U‘O’Z Uo 0er|, (C9
with \. The right-hand side ofC7) is a summation over all

the patterns which generated by the following process: first
divide a sef1,...N} into sets of¢” each of which is a direct
sum of elements connected by a clustér second divide
each of the sets into elements &f, then define connection

o'ed

where an element of is also a family of sets. To repeat, an
element offj(7) is a sum of sets of which a family of sets, an
element ofr, consists. For example,

pattern\’, which consists of one cluster, of elementsin JU{LL,2,{31 {14,516, ={{1,2,3{4,5,6, 7).
Figures 4 and 5 illustrate graphical representations of both (C10
sides of patterns ifC7).
Due to(C7), the cluster integralC6) becomes We can show that for arbitrary functiorig(6),f,(o),
t X3, 3]

@ : @ “@ FIG. 5. A graphical representation of one of
0 (") the patterns which are summed up in the right-
eDIo, \QOH@\ ey e

o 9, 0, IWARNA
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' &
o L) G| OIFG

@ (9//)

0 Q@@

FIG. 8. A graphical representation pfg, 6] in (C17).

FIG. 6. A graphical representation of one of the patterns which

are summed up in the left-hand side of EG11). . . . . . .
P EGLY Using this relation in(C12), we finally obtain

> ( [1 fzw')) > f1(G(n) _1
0"cON) \a'ecd” Te®(0") bN L HE%(N) )\E%(@) ‘]([)\’6])8@([)\’0])1 (C14)
_ P which is (3.6). Note that the right-hand side of E¢C14)
95% fal )al_e[o o g(w Ul_elgr falo”) does not depend oh. Therefore, we do not write lim,..
(C11) any more.

In the no-interaction limit, wheredA/dk) (k) is replaced

In the left-hand side ofC11), one sums up all the patterns With 5(k), Eq.(C14) gives
which are generated by the following process: first divide

{1,...,N} into elements ing”, then make family of sets. EZ 1
Each of the sets consist of some element®'in andg(7) N 48N aeRge) (N—D)!
=46. In the right-hand side ofC11), one sums up all the
patterns which are generated by the following process: first H Mﬂ(a N 1)MemD (M, —1)!
divide a sef1, ...,N} into elements of), then divide each of och
the elements ird into elements o®’'. Figures 6 and 7 illus- (C15
trate graphical representations of both sides of patterns in
(C1D). Next, we prove(3.9). We define
Using a formula(C11) in (C6), by becomes
D([N\,6],\)
by=lim > ( [Mmy > 3 ae =[\",0"]
L—x 0cON) | 0ed 0" (o) N e A0 ’
(M,— )1 (—M? - o1,02€ ([N, 6]) ,
XS\, 6] > (C12 =| {{o1,02}| 03C0o1L 04C0o3 1, g([\',6])],
r€0(0) LN! {o3,04eN, &N’
Note that we have used a relatltmj( =M. N CA. (C16
Substitutions ofLN/N! into Zy in (3.4) and (3.1) give a
relation 0" is a set of a direct sum of elements linked with one cluster

in \’, and\” is a connection pattern of a s@t. A connec-
_ tion in A" links two elements of”, where elements of,
M,— D! (=)Mo~ 1=5y ;. 1 g ’ :
9;@“(,\,) (My=1)H(=1) On1 (C13 each of which is a subset of one of the two elements, are
connected by. For example,

A i
D) @@ o (1234)
0 (o)
G (o)) |GG D
) 6, 65

FIG. 7. A graphical representation of one of the patterns which
are summed up in the right-hand side of EG11). FIG. 9. A graphical representation pfg,6g] in (C17).
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©

D([\g.0e],No) =[Ng,00], (€17
where

No={{{1,2,{3}}.{{1.2.{4}}.{{5.681.{7.8}}, (C18
0o={{1,2,{3}.{4}.{5.61.{7.8.{9}},  (C19

N = {{1.2.{3},{{1.2.{4}}.{{1.2.{7.8}},
{{41.{9}}.{{5.6/.{7.8}} ’ 20
No=1{{{1,2.34.{5.6,7.8}.{{1.2.3.4.{9}}}, (C2D
05={{1,2,3,4,{5,6,7,8,{9}}. (C22

Figures 8 and 9 illustratejrg, 69] and[Ng,6g] in (C17).
By substituting K(k)+2m8(k) into (dA/dk)(k), Eq.
(C14) is changed into

1

bN:EG E E

EO(N) NeAy(h)

J(IN,6]) X SLID(IN,6],)")),

N CA

where S, ([\, 0]) is defined in(3.11). With the explicit ex-
pression ofJ([\,#]), we have

1
>, SL(D(IN,E],N"))

by
N (N=D)! 48Ny NeAg(6) \'c\
" H@ MM =L ) Me=D(p |~ 1)1, (C23

We can show that for arbitrary functiorfg(n,o) and

f2([N, 01),

by= , o3 svopIl > X
(N— 1) 0<O(N) TEO g cO(a) N Ay
X (M, — 1)L
Since
T1yeney onef o a
by becomes

map) L, ©

PHYSICAL REVIEW E 63 036106

FIG. 10. A graphical represen-
tation of one of the patterns which
are summed up in the left-hand
side of Eq.(C24).

D([A,0],2\") =[N, 8]

> X DN, 6], m)Hf (n(o,\),0)

0 O(N) NeA(0) N'CA

=22 X

0"'e®(N) N eAg(0")

<11 2 X >

o'e€t’ 0"cO(0’) )\"EAC(H") 01,y ‘rn(a’,)\’)Eaﬂ

IEARS)

n(a’ \")

< [T fi| n(o N+ 2 85,010

oel”

(C24

The meaning of the left-hand side @£24) is to sum up all
the patterns generated by the following process: first, divide
a set into elements of; second, define a connection pattern
\; then maked” and\’ join elements of together which are
connected with\". The meaning of the right-hand side of
(C24) is to sum up all the patterns generated by the following
process: first, divide a set into elementsfof second, make
a connection patterk’; third, divide each element of the set
6" into elements of”; fourth, define connection patteit
on elements of” each of which is a subset of an element in
#'; then connect elements each of which is a subset of one of
two elements i’ linked with a connection pattem’. Fig-
ures 10 and 11 show graphical representations of both sides
of patterns in(C24). Equation(C24) is similar to(C11), in
the sense that if;(n,o) and f5([\,6]) in Eq. (C24) are
independent oh and \, there is no connection pattern de-
pendence, then E¢C24) becomeqC11).

By use of(C24), we rewrite(C23 as

n(o' A)+sMaN s L -1 _
z H M , i=1 %00 (_1)M{T/ 1
! ! !

(C29

036106-10
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FIG. 11. A graphical represen-
tation of one of the patterns which
are summed up in the right-hand
side of Eq.(C24).

1 1
SL(IN,6]) ———— [ mne™ = M,—1)!
oe(e)(N)xE%(o) (L ])(N_l)!al_elﬂ o N! E) (N) NeAg(6s) aea,m&{o}( )
x > 2 | I mproe xMzw*“‘l)é([x,e],k,{0}>, (D4)
0’ eB(0) )\/EAC(H,) o'eb
><(—1)Mfr'1(|v|(,,—1)1). (C26) Fo(k)=1, (D5)

Using the relation(C15), we arrive at(3.9), where foro e 6,6, =U{{0}},

: ([N, 6],K,,
ber, 3 3 rouensiinen, c2p e

e®(N) NeA(0)

dk,
whereJ'([\,6]) is defined in(3.10. f I1 ( I1 K(k(,f—ka//)>

o' ebo' #o {0/, 0" en

APPENDIX D: THE CLUSTER INTEGRAL (3.9 BY USE
OF THE TBA X ex

-8B X Mkz) (D6)

o' el +o
A result of the bosonic formulation of the TBfS] is

It can be easily checked théD5) is true.

pB=— f %Iog(l—zexp(—ﬁ(k% #(k)))), (D1) < From Eq.(D2), a recursive relation foF (k) is obtained

where

Ful= o > f Kk,
N! 6c®(N) oeb
m(k= 5 f Kk q)log(L ~zexp(~ B+ (@),

(D2) X X (Mg —1)lexp(—BM 402
6'c®(M,)
We define a function
x [T M 1Ry 1) (D7)
_ 1 Mexp(—Bm(K))| Sy M=t
FNO= 5| (D3)
=0 Substituting the expression &f(k) in (D4) into FMa_l(q)
and prove that in (D7), we obtain
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AL
O

6y oy FIG. 12. A graphical representation of one of
the patterns which are summed up in the left-

c ’ ° Q hand side of Eq(D10).

(AT, 01" U {n ]2, 65" U {n2}}]

1 dg,
Fn(k) =+ f K(k—d,) 2 (Mgp—1)lexp(—BMyq2)
N! Ge()(N) P

0’ e®(M,)

x [T My X > ( I - )IM”“’“1)S<[A"0’;]qm{0}) (D8)

a'ed 0"eOMy—1) N eA(67) " ¢",+{0}

For noninteger argument @(o), (D8) becomes

1 da,
=g S T [ SoKk=a) 3 (M= 1texp— M )

e®(N) oeb 0 cO(o)
S » ( T (M- DM l)sw oU{{n}1.4,.(n).
a'ed N€T ¢"cO(c’—{n}) N eA(0"U{n}}) \ 0”@ #{n}
(D9)
We can show that
> M) [T X > > fo((N,0"0{{ninh)  TT  fa(n(e’A"),0")
0" e O(N) o"ed" neo” 0" e®(d"—{n}) )\WEAC(HWU{{H}}) o' e 0", #{n}
= 2 2 2 MEIVEM)E(N0L0) TT fan(e’ )0, (D10)
0cO(N) NeA () oeb o' e, %0
T
where f{(n) and fs(n,o) are arbitrary functions, and oceb, o;e€b,.

fo([N\,6],0) is a function which satisfies

The meaning of the right-hand side @210) is to sum up all
fo([N,0],0) =11 2N, 61,09, the patterns generated by the following process: first, divide
[ a set{1,...N} into sets of6; second define a connection pat-
(D11  tern\ which consists of one cluster; then choose onerdat
A=U\;, 0=U(6—{o})U{o}, o=Uodg;, 6. The meaning of the left-hand side @10) is to sum up
i [ [ all the patterns generated by the following process: first, di-

@ @ @ Q Q FIG. 13. A graphical represen-
» » tation of one of the patterns which
are summed up in the right-hand

.. &) @ () dide of £q,010)

A, 6]
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vide {1,...N} into sets of#” each of which contain one ele- Then, define a connection pattexfi of sets in6” and{{n}}.
mentn in the o chosen in the right-hand side and elements ofThe connection pattern” consists of one cluster. Figures 12
which some sets ird consists. Thesr chosen in the right- and 13 illustrate graphical representations of both sides of
hand side is not one of these sets, and these sets are cgatterns in(D10). Note that if one chooses a right-hand side
nected with each other by connectionshirand any sets are pattern, there exist the correspondind@(‘"“ left-hand side
connected with ther by connections inn. Second, divide patterns.

each of sets in#” into sets of ¢ and {{n}}. Applying the relation(D10) to (D9), we have

1 o an' ’
Fnk=r7 2 f ka3 S S MM, 1) expl— BM )

#cO(N) oeb 0'cO(0) N eAy(0') o' eb’

XSNL0d, ) TT (MM

n n
e, d"+o'

1 d o’ HO'/ !
S| RS VD S - CoN S RV (S

0cON) 00 9" c@(a) N eAg(0') o' €0’

xexp— BM 2SN, 01,00, 0")  TT  (Mp—1)IM27 )72

" ’ " ’
o el o Fo

1

q(r
N!
6eO(N) NeA(h) [)\ 0’ ]EG([}\ 0] o 60’

TK(k=gp)M}, (MM, —1)!

xexp(— M a2 )N, 0' 1,0, ,0')  T1 (Mp—1)itm™7 )7t (D12)
o"eb " +0'

The second equality is due to a replacement of integration dk 5 (M=1)!
variables fromg,, to g, , and the relatioiC7) is used in the bn= f 27, ; exp(—M Bk —
third equality.
By definitions, the following relation can be shown:
x[] ™ AFu,—1(K). (D15)
gef
~ da,,
SN0 ko= I S K(k=g,)

(i 6i]eGx. 0D Substituting the expression dfy in (D4) into Fyy _; in

Xexq_ﬁMo—iqzzri)’é([)\i vgi]iqzri’O-i)! (D15) giveS

NelAd(0.), NeA(0), oieb, N =NUU{o {0}}.
: dk , (My—1)!
(D13) bN:f 5 E exq_Mgﬁk )T

27 o SO(N)

x[Im, X >

Using relation(D13) in (D12), we obtain

1 oed 0'cOM,—1) N eAy (6
P =7 ( (M,—1)! "
0e®(N) NeA(0;) \ oeb,0+{0} N
X I M-t
XME((",)\)*]- Aé([)\’e_‘_],k'{o}) (D14) o' e o' #{0}
XS\, 0.1,k {0}). (D16)
We see thatD14) is equal to(D4). Therefore, Eq(D4) is
recursively proved.
From (D1), we have Using the relationD10), we have
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b= S S [ exs—w )
0e O(N) }\eAC(f)) ged
M)( -l
><MU S([)\ 0],k,o)
x I (Mg —1mme vt (D17)
o' el +o
Since the relation
, B dg, o=
Sx([)\,ﬁ])— 2 eXLX—,BM(,qU)S([)\,G],qU,a'),
(D18)
NeA(0), oeb,

holds, we arrive at

PHYSICAL REVIEW E 63 036106

1
bN:m 2 Ma’)
*0eO(N) NeA(0) \oeb
1L (Mg—1>!Mﬂ“"“‘l)s;([x,e]) (D19)
1
= M _—1)!
(N=1)! 06%(N) NeA(0) (Ie[e( o1

XMQ("'”_l)S;([)\,H]), (D20)

where S, (\, 0) is defined in(3.11). This expression of the
cluster integraby, is the same ag3.9).
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